

CP/40 – The Origin of VM/370 Page 1

CP/40—THE ORIGIN OF VM/370

L.W. Comeau169

Introduction

Perhaps what is significant is not the ability to sit down and plan invention, but the ability to
recognize innovation when it occurs spontaneously. Such was the case with a software system
called CP/40. Originally planned as a measurement tool, it has grown to become an equal partner
with IBM’s two other operating systems, DOS/VSE and MVS.

It is further interesting to note that this stepchild of the time-sharing community now enjoys more
popularity than its well-funded contemporaries, IBM’s TSS and GE’s (Honeywell) Multics. It
would be extremely gratifying to attribute that success to brilliant design decisions early on in the
program, but, upon reflection, the real element of success of this product was that it was not
hampered by an abundance of resources, either manpower or computer power.

An early consultant’s report rated the modest goals of the CP project and claimed it was not price
competitive with the larger systems, the IBM 360/67 and the GE 645. In a follow-up look, the
same consultant said that the obvious error in his previous work was to accept the claims of the
larger systems versus what was achievable. The CP/40 system met its goal of 15 users; the larger
systems were incapable of supporting hundreds of terminals, which was their design point

CP/CMS Team

To understand the rationale for CP/40, it is necessary to appreciate the backgrounds of its
designers. There were five major contributors to the design of this system—Bob Adair, Dick
Bayles, Bob Creasy, John Harmon, and myself. Of this group, three were programmers and the
remaining, Harmon and Comeau, were systems engineers. None were neophytes in the
time-sharing world. Bob Adair was involved in command and control systems being built by the
MITRE Corporation, and the remaining four had been associated with the MIT Computation
Center in the years preceding the CP design.

The MIT association, in particular the goals of and experience with Professor Corbato’s CTSS
system, strongly influenced the design of the terminal user interface for CMS. In fact, the
emphasis on “user friendly” interfaces brought on by the success of Wang in the office systems
area is hardly “new news” to this group. Those at MIT in the early 1960’s put a strong emphasis
on the needs of the non-computer-oriented professional.

Indeed, the artificial separation of word processing from data processing that occurred in the
office system market comes as a complete surprise to the people who have been VM users over
the years. Word processing has always been available to the VM group, first in the form of

169 This paper is reproduced from the Proceedings of SEAS AM82, September, 1982, with the

permission of SHARE Europe and L.W. Comeau.
UNIX is a trademark of AT&T Bell Laboratories.

Page 2 CP40 – The Origin of VM/370

editors and print formatters and, later, incorporating the advantages of electronic mail. This, too,
was part of the MIT philosophy; that is, to be of any use a system should provide the basis for its
own evolvement, including the requirement for documentation.

The CP/CMS team was formed as part of the Cambridge Scientific Center, which was established
by IBM management in 1964 to provide a center for competency in time-sharing. Although IBM
had worked with terminal systems, such as the Sabre, the American Airlines on-line reservations
system, it was felt that the general purpose time-sharing environment was significantly unique so
as to require a separate research.

Baseline

In the six months immediately preceding the design of CP-40, the Cambridge Scientific Center
had been involved in preparing two proposals for time-sharing systems, one to Project MAC at
MIT, which IBM lost to the GE 645 Multics system, and one to MIT’s Lincoln Lab, which was a
winning bid and was the genesis of the System/360 Model 67 and the TSS operating system.

The major technological change proposed for these systems was virtual memory. It was felt that
this offered a solution to both the programmer productivity constraint and to the performance
problems faced by earlier time-sharing efforts. It was widely accepted in the early 1960’s that the
cost of producing programs rose exponentially as one approached the memory limit of a
particular machine. Virtual memory, by releasing the programmer from this constraint, would
obviously lower the cost and time to produce a large application.

Since the early time-sharing experiments used base and limit registers for relocation, they had to
roll in and roll out entire programs when switching users. There was some talk of the
“onion-skin” technique, where small programs would displace only parts of large programs when
users were swapped, but to my knowledge it was never implemented. Virtual memory, with its
paging technique, was expected to reduce significantly the time spent waiting for an exchange of
user programs.

What was most significant to the CP-40 team was that the commitment to virtual memory was
backed with no successful experience. A system of that period that had implemented virtual
memory was the Ferranti Atlas computer, and that was known not to be working well. What was
frightening is that nobody who was setting this virtual memory direction at IBM knew why Atlas
didn’t work.

Similarly, the functions to be provided in the end-user terminal were the subject of debate in the
mid-1960’s. There was a requirement to provide application programs with each single character
as it was typed. It was thought that with that capability errors could be turned around
instantaneously, and the system could thereby save the user retyping time and effort. This
requirement exists today in the “raw mode” available to programs written for the UNIX system*

The requirement for upper and lower case received strong emphasis then. Today, of course, one
finds few terminals without that capability, but there was little appreciation for that function
amongst terminal builders of the early 1960’s. Terminals were viewed as strictly data-entry
devices.

CP/40 – The Origin of VM/370 Page 3

A third terminal requirement generated in this area was the ability to turn off printing in order to
suppress printing when the user entered authorization codes. We take it for granted now, but
most terminal manufacturers did not include this function in their early models.

It was against this background that the Cambridge Scientific Center undertook the CP/40 project.
It was our intent to study programs and programmers in a time-sliced virtual memory
environment.

Vehicle

The 360/40 was chosen as the vehicle on which to implement the Scientific Center’s time-sharing
experiment. This was not the result of extensive load analysis but because of a lack of
availability of a 360/50, which was thought to have the CPU power required to support our
interactive population. It turned out to be fortuitous, because the modifications required to
segment the memory for virtual addressing were easily accomplished on that hardware
(System/360 Model 40).

Virtual memory on the 360/40 was achieved by placing a 64-word associative array between the
CPU address generation circuits and the memory addressing logic. The array was activated via
mode-switch logic in the PSW and was turned off whenever a hardware interrupt occurred.

The 64 words were designed to give us a relocate mechanism for each 4K bytes of our 256K-byte
memory. Relocation was achieved by loading a user number into the search argument register of
the associative array, turning on relocate mode, and presenting a CPU address. The match with
user number and address would result in a word selected in the associative array. The position of
the word (0-63) would yield the high-order 6 bits of a memory address. Because of a rather loose
cycle time, this was accomplished on the 360/40 with no degradation of the overall memory
cycle. In addition to the translate function, the associative array was used to record the hardware
use and change status and the software-noted transient and locked conditions relative to a
particular block of 4K bytes in the memory.

Since the array functioned as a content-addressable store when in supervisor state, searches to
satisfy the LRU algorithm were quite fast. There is considerably more information on the
associative memory in the referenced IEEE article by Lindquist, Seeber, and Comeau <ref. 1>.

The major difference between the CAT (Cambridge Address Translator) associative memory and
our current line of relocate mechanisms was that the CAT was a memory-mapping device,
whereas today’s hardware employs a program-mapping scheme.

In a memory-mapping translation mechanism, there is one relocating entry for each page of real
memory. In a program-mapping scheme, the hardware contains relocation information relative to
the particular program that is executing, and information relative to real memory blocks is
maintained elsewhere. The System/370, for instance, maintains use and change data in its key
storage, which is a totally independent mechanism from the relocation mechanism.

Since it appears logically that memory mapping, a la S/360 Model 40, is superior to program
mapping, then why isn’t it prevalent today? The answer is cost; the original array cost thirty-five
times what a conventional memory cell did at that time, and since then it seems that associative
logic is still roughly eight to ten times what conventional logic costs. There has been little work
done within IBM on associative technology, and, therefore, there is little likelihood that it will
ever become price competitive in our hardware. What we should now look at is absolute cost and
what associative logic can give us in additional function.

Page 4 CP40 – The Origin of VM/370

There is an additional problem in a memory-mapping scheme which doesn’t exist with
program-mapping techniques; that is page sharing. Memory-mapping schemes have only one
entry per page of the real storage. To allow access among a group of users requires either
changing that entry or having a second, or all-user, userid. The latter, of course, doesn’t
accommodate a selective sharing of memory.

The value of sharing programs in memory is suspect, based on the measurements taken during the
life of the CP/40 project. There are some applications where it is desirable to share data in
memory, and here the memory-mapping scheme is deficient. Interestingly enough, although
sharing data has always been unpleasant in VM, yet no one seems to have as yet put forth an
elegant solution.

CP/CMS Design

The two different goals of our project, one to measure S/360 software in a virtual memory,
time-shared environment, and, second, to provide the Scientific Center staff members with an
interactive facility, led us to a design which cleanly separated those two requirements.

The measurement requirement dictated that the functions to be measured and the algorithms to be
modified and tested be very localized. A second motivation for maintaining a distinct separation
became apparent when the strong wills and opinions of the group became apparent. I think that
most designers recognize the need for good separation of function in programming system design,
but compromise becomes the rule very early in the effort. With the particular group assembled to
build CP/CMS, the personalities reinforced that design principle, rather than compromising it.

It seems now that the decision to provide a Control Program interface that duplicated the S/360
architecture interface <ref. 2> was an obvious choice. Although it was, given our measurement
objective, it wasn’t, given our in-house interactive system objective.

We were more secure with the decisions for the CMS external interface. It was clear, based upon
the experience gained with CTSS, that a user-friendly command language was key. Another
thing we had learned was that the system had to be very forgiving, and although options were
desirable, default-mode, non-required parameters were to be a paramount design consideration in
CMS.

The choice of an architected interface, the S/360, between CP/40 and its operating system turned
out to have been most fortunate. It permitted simultaneous development of CP and CMS; it
allowed us to measure non-virtual systems, OS and DOS, in a virtual memory environment, and it
also provided a high level of integrity and security.

Conversely, this same design made sharing programs and data somewhat difficult. Even today’s
VM system seems lacking in this regard.

Program Model

Even though we all realized that there were loops in programs, essentially our model was that a
program progressed linearly in its execution and data references. There certainly was no notion
of “working set” prior to our original experiments.

CP/40 – The Origin of VM/370 Page 5

We hoped to determine the proper page size, the rate at which page turning would occur in a
multi-programmed environment, and the value of shared program pages. Program and user
characteristics included the number of instructions executed between I/O requests, which is still
key for system designers. What was the time slice required to deliver acceptable performance?
How much time did the user think between commands?

Experiments

The experiments run on the CP/40 system yielded significant results in the area of virtual
memory. First, we discovered the phenomenon currently known as “thrashing”. I first reported it
to an internal IBM conference on storage hierarchy in December, 1966 <ref. 3>. In a follow-up
paper on virtual memory <ref. 4>, we showed the dramatic reduction in the required number of
page swaps that could be achieved through some very simple user optimization procedures.

A third report finally published in 1971 <ref. 5 and 6> contains the largest amount of data ever
compiled on a controlled virtual memory experiment. It originally took 63 hours to run, so it is
doubtful anyone would find it worthwhile to repeat. The experimental factors chosen for that
experiment were:

• replacement algorithm
• subroutine ordering
• problem programs
• memory size

For each factor, three variables were chosen, such that the total number of experimental values
was 81. Although some of the factors could be argued as to their validity, the experiment which
measured page swaps and active and inactive counts gave researchers a better feel for the
interactions caused by these factors.

The most significant result of the CP/40 work was the recognition that a multiprogramming
system naturally divides its function into three levels of privilege and protection:

• level 0—the control program level—assumes allocation responsibility for the
serially reusable resources of the system. It is at this level that
multiprogramming or inter-job management takes place.

• level 1—the job management level—contains the functions normally required
by a single job to start, stop, do command interpretation, maintain data files,
etc.

• level 2—the application level—contains the function a particular user wishes
to accomplish.

In CP/40 and subsequent VM offerings, we implemented this three-level structure in what is
essentially a two-level architecture (S/370, S/370). By defining a true three-level
multiprogramming architecture, the overall job of providing those functions necessary to
accomplish the level 0 and level 1 tasks would be greatly simplified, and the resultant path lengths
would be considerably reduced.

Although most system programmers I’ve discussed this structure with agree to its merit, I’m not
familiar with any hardware implemented this way.

Page 6 CP40 – The Origin of VM/370

A Look Back

The virtual machine design, as represented by the CP/CMS system, certainly has proven its
viability, lasting now over fifteen years. During this period, we have added many new devices
and software functions, so the system also meets the test of extendibility.

The success of the CP/CMS system certainly is in no small way attributable to its friendly and
forgiving user interface.

A second contributor was the clean separation of function in the CP product, which made it easy
for the sophisticated user population to remove, add, and substitute functions supplied by IBM,
thereby greatly expanding the talent working on enriching the system.

Perhaps the most significant factor which contributed to CP’s success in the middle to late 1960’s
was the failure of its competitors, Multics and TSS, to meet the commitments made to the
marketplace. The market had been “hyped” to expect major function and performance (in the
hundreds of terminals), and when they failed to deliver, expectations were lowered, but the need
for time-sharing still existed among the customers. The CP/CMS system was operational and,
therefore, represented an acceptable alternative.

The lesson to be learned when comparing CP/CMS with its contemporaries, TSS and Multics, is
that it is easier to provide functions to an extendible high-performance system than it is to
improve the performance of an integrated rich function system.

The problem for the future seems to be maintaining an architected three-level system structure
within VM. There are major differences in the way an architect approaches the definition of an
interface versus the way a programmer approaches it. An architect tries to insure the durability
and completeness of what he specifies. He recognizes the scarcity of resources, be they
parameters, bit interrupts, etc., and tests his specifications to make sure there is no needless
resource consumption. The programmer views his job as to satisfy the requirements for a
particular function. There is little concern for durability and conservation in this community.

As an example, the virtual machine interconnection facilities today are: Channel-to-Channel
Adapter, VMCF, and IUCV. Essentially, they are all trying to pass data between virtual
machines, but instead of extending and modifying the architecture of the original technique, the
programming community invented net new things.

DIAGNOSE is another example of this phenomenon. Functions are provided in CP, invoked
through the DIAGNOSE interface, without an appreciation for the logical (three-level) structure
behind the VM design. Because of this, movement of CMS without CP level 1 and level 2 code
to a standalone environment has proved extremely difficult. Remember that in the original
implementation, CMS ran on a S/360 Model 40 without the requirement for the CP
multiprogramming software.

In closing, I believe there is much to be gained if we build hardware which supports a three-level
software structure, and I hope to stimulate interest in this by this presentation.

CP/40 – The Origin of VM/370 Page 7

References

1. “A Time-Sharing System Using an Associative Memory”, A.V. Lindquist, R.R. Seeber, and
L.W. Comeau, Proceedings of the IEEE, vol. 54, no. 12, December, 1966.

2. “A Virtual Machine System for the 360/40”, R.J. Adair, R.U. Bayles, L.W. Comeau, and
R.J. Creasy, IBM CSC Report, May, 1966.

3. “Operating System/360 Paging Studies”, L.W. Comeau, IBM Storage Hierarchy System
Symposium, December, 1966.

4. “A Study of the Effect of User Program Optimization in a Paging System”, L.W. Comeau,
ACM Symposium on Operating Systems, October, 1967.

5. “A Multifactor Paging Experiment: Part I, the experiment and conclusions”, R.T. Tsao,
L.W. Comeau, and B.M. Margolin, Statistical Computer Performance Evaluation, Academic
Press, Freiburger etal., ed., 1972.

Same as above, IBM Research Report RC3443, July 9,1971.

Les Comeau

